The paper is devoted to prove a version of Milnor-Moore Theorem for connected braided bialgebras that are infinitesimally cocommutative. Namely in characteristic different from $2$, we prove that, for a given connected braided bialgebra $(A,\mathfrak{c}_A)$ which is infinitesimally $\lambda $-cocommutative for some element $\lambda \neq 0$ that is not a root of one in the base field, then the infinitesimal braiding of $A$ is of Hecke-type of mark $\lambda $ and $A$ is isomorphic as a braided bialgebra to the symmetric algebra of the braided subspace of its primitive elements.

Braided Bialgebras of Hecke-type

ARDIZZONI, Alessandro;
2009-01-01

Abstract

The paper is devoted to prove a version of Milnor-Moore Theorem for connected braided bialgebras that are infinitesimally cocommutative. Namely in characteristic different from $2$, we prove that, for a given connected braided bialgebra $(A,\mathfrak{c}_A)$ which is infinitesimally $\lambda $-cocommutative for some element $\lambda \neq 0$ that is not a root of one in the base field, then the infinitesimal braiding of $A$ is of Hecke-type of mark $\lambda $ and $A$ is isomorphic as a braided bialgebra to the symmetric algebra of the braided subspace of its primitive elements.
2009
321
3
847
865
http://dx.doi.org/10.1016/j.jalgebra.2008.11.011
Braided bialgebras; Braided enveloping algebras; Milnor–Moore Theorem
A. ARDIZZONI; C. MENINI C.; D. STEFAN
File in questo prodotto:
File Dimensione Formato  
BrBialgHeckeType-Copertina.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 825.84 kB
Formato Adobe PDF
825.84 kB Adobe PDF Visualizza/Apri
15-BrBialgHeckeType.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 272.34 kB
Formato Adobe PDF
272.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/92400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 10
social impact