This paper is concerned with the construction of a continuous parameter sequence of random probability measures and its application for modeling random phenomena evolving in continuous time. At each time point we have a random probability measure which is generated by a Bayesian nonparametric hierarchical model, and the dependence structure is induced through a Wright-Fisher diffusion with mutation. The sequence is shown to be a stationary and reversible diffusion taking values on the space of probability measures. A simple estimation procedure for discretely observed data is presented and illustrated with simulated and real data sets.
Geometric Stick-Breaking Processes for Continuous-Time Nonparametric Modeling
RUGGIERO, MATTEO;
2009-01-01
Abstract
This paper is concerned with the construction of a continuous parameter sequence of random probability measures and its application for modeling random phenomena evolving in continuous time. At each time point we have a random probability measure which is generated by a Bayesian nonparametric hierarchical model, and the dependence structure is induced through a Wright-Fisher diffusion with mutation. The sequence is shown to be a stationary and reversible diffusion taking values on the space of probability measures. A simple estimation procedure for discretely observed data is presented and illustrated with simulated and real data sets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.