Interpolation of smooth functions and the discretization of elliptic PDEs by means of radial functions lead to structured linear systems which, for equidistant grid points, have almost the (block) Toeplitz structure. We prove upper bounds for the condition numbers of the $n \times n$ $n\times n$Toeplitz matrices which discretize the model problem $u''(x)=f(x)$, $x \in (0,1)$, $u(0)=a$, $u(1)=b$, $u''(x)=f(x)$over an equally spaced grid of $n+2$ $n+2$ points in $[0,1]$ $[0,1]$by means of the collocation method based on radial functions of the multiquadric, inverse multiquadric and Gaussian type. These bounds are asymptotically sharp.

On certain (block) Toeplitz matrices related to radial functions

DE ROSSI, Alessandra;GABUTTI, Bruno
2008-01-01

Abstract

Interpolation of smooth functions and the discretization of elliptic PDEs by means of radial functions lead to structured linear systems which, for equidistant grid points, have almost the (block) Toeplitz structure. We prove upper bounds for the condition numbers of the $n \times n$ $n\times n$Toeplitz matrices which discretize the model problem $u''(x)=f(x)$, $x \in (0,1)$, $u(0)=a$, $u(1)=b$, $u''(x)=f(x)$over an equally spaced grid of $n+2$ $n+2$ points in $[0,1]$ $[0,1]$by means of the collocation method based on radial functions of the multiquadric, inverse multiquadric and Gaussian type. These bounds are asymptotically sharp.
2008
428
508
519
D. A. Bini; A. De Rossi; B. Gabutti
File in questo prodotto:
File Dimensione Formato  
LAA_2008.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 188.1 kB
Formato Adobe PDF
188.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/99308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact