BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch 'wound-healing' assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon-rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate.

Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells.

MINELLI, ROSALBA;SERPE, Loredana;PETTAZZONI, PIERGIORGIO;MINERO, Valerio Giacomo;BARRERA, Giuseppina;ROSA, ARIANNA CAROLINA;MUNTONI, Elisabetta;FANTOZZI, Roberto;ZARA, Gian Paolo;DIANZANI, Chiara
2012-01-01

Abstract

BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch 'wound-healing' assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon-rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate.
2012
166 (2)
587
601
Minelli R; Serpe L; Pettazzoni P; Minero V; Barrera G; Gigliotti C; Mesturini R; Rosa A; Gasco P; Vivenza N; Muntoni E; Fantozzi R; Dianzani U; Zara G...espandi
File in questo prodotto:
File Dimensione Formato  
Minelli et al.pdf

Open Access dal 23/10/2012

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Minelli_et_al-2012-British_Journal_of_Pharmacology.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/110119
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 40
social impact