This paper presents the optimisation efforts on the creation of a graph-based mapping representation of gene adjacency. The method is based on the Hi-C process, starting from Next Generation Sequencing data, and it analyses a huge amount of static data in order to produce maps for one or more genes. Straightforward parallelisation of this scheme does not yield acceptable performance on multicore architectures since the scalability is rather limited due to the memory bound nature of the problem. This work focuses on the memory optimisations that can be applied to the graph construction algorithm and its (complex) data structures to derive a cache-oblivious algorithm and eventually to improve the memory bandwidth utilisation. We used as running example NuChart-II, a tool for annotation and statistic analysis of Hi-C data that creates a gene-centric neigh- borhood graph. The proposed approach, which is exemplified for Hi-C, addresses several common issue in the parallelisation of memory bound algorithms for multicore. Results show that the proposed approach is able to increase the parallel speedup from 7x to 22x (on a 32-core platform). Finally, the proposed C++ implementation outperforms the first R NuChart prototype, by which it was not possible to complete the graph generation because of strong memory-saturation problems.
Memory-Optimised Parallel Processing of Hi-C Data
DROCCO, MAURIZIO;MISALE, CLAUDIA;PERETTI PEZZI, GUILHERME;TORDINI, FABIO;ALDINUCCI, MARCO
2015-01-01
Abstract
This paper presents the optimisation efforts on the creation of a graph-based mapping representation of gene adjacency. The method is based on the Hi-C process, starting from Next Generation Sequencing data, and it analyses a huge amount of static data in order to produce maps for one or more genes. Straightforward parallelisation of this scheme does not yield acceptable performance on multicore architectures since the scalability is rather limited due to the memory bound nature of the problem. This work focuses on the memory optimisations that can be applied to the graph construction algorithm and its (complex) data structures to derive a cache-oblivious algorithm and eventually to improve the memory bandwidth utilisation. We used as running example NuChart-II, a tool for annotation and statistic analysis of Hi-C data that creates a gene-centric neigh- borhood graph. The proposed approach, which is exemplified for Hi-C, addresses several common issue in the parallelisation of memory bound algorithms for multicore. Results show that the proposed approach is able to increase the parallel speedup from 7x to 22x (on a 32-core platform). Finally, the proposed C++ implementation outperforms the first R NuChart prototype, by which it was not possible to complete the graph generation because of strong memory-saturation problems.File | Dimensione | Formato | |
---|---|---|---|
2015_pdp_memopt.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
344.83 kB
Formato
Adobe PDF
|
344.83 kB | Adobe PDF | Visualizza/Apri |
2015_PDP_memory.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
299.69 kB
Formato
Adobe PDF
|
299.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.