In this paper we study the relationships between general quantization rules which yield Cohen operators and the signal time-frequency representations in the Cohen class. After defining a suitable functional setting, we focus on the particular case of the concentration operators which, as the multipliers and Fourier multipliers in the Donoho-Stark uncertainty principle, furnish estimates of the energy concentration on subsets of the time-frequency space. Finally we study the case of positive representations in the Cohen class.

Cohen operators associated with signal representations

Paolo Boggiatto;Evanthia Carypis;Alessandro Oliaro
2017-01-01

Abstract

In this paper we study the relationships between general quantization rules which yield Cohen operators and the signal time-frequency representations in the Cohen class. After defining a suitable functional setting, we focus on the particular case of the concentration operators which, as the multipliers and Fourier multipliers in the Donoho-Stark uncertainty principle, furnish estimates of the energy concentration on subsets of the time-frequency space. Finally we study the case of positive representations in the Cohen class.
2017
8th International Conference on Mathematical Modeling (ICMM-2017)
Yakutsk, Russia
4-8 luglio 2017
Proceedings of the 8th International Conference on Mathematical Modeling (ICMM-2017)
Ivan E. Egorov, Sergey V. Popov, Petr N. Vabishchevich, Mikhail Yu. Antonov, Nyurgun P. Lazarev, Marianna S. Troeva, Anna O. Ivanova and Yuri M. Grigor’ev
1907
030055.1
030055.9
978-0-7354-1599-7
http://aip.scitation.org/doi/pdf/10.1063/1.5012677
Time-frequency representations, Cohen class, Concentration operator
Boggiatto, Paolo; Carypis, Evanthia; Oliaro, Alessandro
File in questo prodotto:
File Dimensione Formato  
Boggiatto Carypis Oliaro Proceedings Yakutsk.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 130.95 kB
Formato Adobe PDF
130.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1652801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact