Let $K$ be a field of any characteristic, $A$ be a Noetherian $K$-algebra and consider the polynomial ring $A[x_0,\dots,x_n]$. The present paper deals with the definition of marked bases for free $A[x_0,\dots,x_n]$-modules over a quasi-stable monomial module and the investigation of their properties. The proofs of our results are constructive and we can obtain upper bounds for the main invariants of an ideal of $A[x_0,\dots,x_n]$ generated by a marked basis, such as Betti numbers, regularity and projective dimension.

Marked bases over quasi-stable modules

Cristina Bertone;Margherita Roggero;
2016-01-01

Abstract

Let $K$ be a field of any characteristic, $A$ be a Noetherian $K$-algebra and consider the polynomial ring $A[x_0,\dots,x_n]$. The present paper deals with the definition of marked bases for free $A[x_0,\dots,x_n]$-modules over a quasi-stable monomial module and the investigation of their properties. The proofs of our results are constructive and we can obtain upper bounds for the main invariants of an ideal of $A[x_0,\dots,x_n]$ generated by a marked basis, such as Betti numbers, regularity and projective dimension.
2016
http://arxiv.org/abs/1511.03547v2
polynomial module, quasi-stable module, reduction relation, free resolution, Betti numbers, regularity, projective dimension
Mario, Albert; Cristina, Bertone; Margherita, Roggero; Seiler, Werner M.
File in questo prodotto:
File Dimensione Formato  
MarkedModulesArxiv1.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 439.7 kB
Formato Adobe PDF
439.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1655033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact