We characterize the Schwartz kernels of pseudodifferential operators of Shubin type by means of a Fourier-Bros-Iagolnitzer transform. Based on this, we introduce as a generalization a new class of tempered distributions called Shubin conormal distributions. We study their transformation behavior, normal forms, and microlocal properties.
Conormal distributions in the Shubin calculus of pseudodifferential operators
Cappiello, Marco;
2018-01-01
Abstract
We characterize the Schwartz kernels of pseudodifferential operators of Shubin type by means of a Fourier-Bros-Iagolnitzer transform. Based on this, we introduce as a generalization a new class of tempered distributions called Shubin conormal distributions. We study their transformation behavior, normal forms, and microlocal properties.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipo di file:
PDF EDITORIALE
Dimensione
419.61 kB
Formato
Adobe PDF
|
419.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Shubinconormal8.pdf
Accesso aperto
Descrizione: Post-print autore
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
405.06 kB
Formato
Adobe PDF
|
405.06 kB | Adobe PDF | Visualizza/Apri |
Shubinconormal8.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
405.06 kB
Formato
Adobe PDF
|
405.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.