Dried fruits are important, healthy and popular snacks, despite the limited information on their nutritional profiles and phytochemical composition. The present work was aimed to study the chemical composition of freeze-dried fruits from four fruit species: two common commercial snacks (apple and goji) and two innovative products (kaki and kiwi). Sugar and organic acid levels, total phenolics (TPC), and main health-promoting phytochemicals were studied by HPLC fingerprinting analysis. Furthermore, in vitro antioxidant capacity (AOC) was preliminarily observed in these products. A Principal Component Analysis (PCA) was carried out as a multivariate approach as well. The TPC ranged from 210.9 mg GAE/100g DW (kiwi) to 872.6 mg GAE/100g DW (kaki), while dried fruit antioxidant capacity ranged from 23.09 mmol Fe2+/kg DW (goji) to 137.5 mmol Fe2+/kg DW (kaki). The most important phytochemical class in apple (two cultivars), kiwi, and kaki dried fruits was phenolics (from 74.6% to 93.3%), while monoterpenes were the first class in goji (67.5%). No anthocyanins have been identified in dried fruits because these compounds are most likely converted to phenolic acids during the drying process. This research intended to stimulate large-scale exploitation of commercial dried fruits as functional foods as well.
Traditional and unconventional dried fruit snacks as a source of health-promoting compounds
Donno D.;Mellano M. G.;Riondato I.;De Biaggi M.;Andriamaniraka H.;Gamba G.;Beccaro G. L.
Last
2019-01-01
Abstract
Dried fruits are important, healthy and popular snacks, despite the limited information on their nutritional profiles and phytochemical composition. The present work was aimed to study the chemical composition of freeze-dried fruits from four fruit species: two common commercial snacks (apple and goji) and two innovative products (kaki and kiwi). Sugar and organic acid levels, total phenolics (TPC), and main health-promoting phytochemicals were studied by HPLC fingerprinting analysis. Furthermore, in vitro antioxidant capacity (AOC) was preliminarily observed in these products. A Principal Component Analysis (PCA) was carried out as a multivariate approach as well. The TPC ranged from 210.9 mg GAE/100g DW (kiwi) to 872.6 mg GAE/100g DW (kaki), while dried fruit antioxidant capacity ranged from 23.09 mmol Fe2+/kg DW (goji) to 137.5 mmol Fe2+/kg DW (kaki). The most important phytochemical class in apple (two cultivars), kiwi, and kaki dried fruits was phenolics (from 74.6% to 93.3%), while monoterpenes were the first class in goji (67.5%). No anthocyanins have been identified in dried fruits because these compounds are most likely converted to phenolic acids during the drying process. This research intended to stimulate large-scale exploitation of commercial dried fruits as functional foods as well.File | Dimensione | Formato | |
---|---|---|---|
Antioxidants.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
681.88 kB
Formato
Adobe PDF
|
681.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.