Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.

The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium

Margaria J. P.
First
;
Campa C. C.;De Santis M. C.;Hirsch E.;Franco I.
2020-01-01

Abstract

Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
2020
66
1
12
Cancer; mTOR; Phosphoinositides; PI3K; PIK3C2A; Polycystic kidney disease; Polycystins; Primary cilium; Cell Proliferation; Cilia; Humans; Kidney Tubules; Phosphatidylinositol 3-Kinases; Polycystic Kidney Diseases; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases; TRPP Cation Channels
Margaria J.P.; Campa C.C.; De Santis M.C.; Hirsch E.; Franco I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1801423
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 49
social impact