We study the Boussinesq hierarchy in the geometric context of the theory of bi-Hamiltonian manifolds. First, we recall how its bi-Hamiltonian structure can be obtained by means of a process called bi-Hamiltonian reduction, choosing a specific symplectic leaf of one of the two Poisson structures. Then, we introduce the notion of a bi-Hamiltonian -hierarchy, that is, a bi-Hamiltonian hierarchy that is defined only at the points of the symplectic leaf , and we show that the Boussinesq hierarchy can be interpreted as the reduction of a bi-Hamiltonian -hierarchy.

Boussinesq hierarchy and bi-Hamiltonian geometry

Ortenzi G.;
2021-01-01

Abstract

We study the Boussinesq hierarchy in the geometric context of the theory of bi-Hamiltonian manifolds. First, we recall how its bi-Hamiltonian structure can be obtained by means of a process called bi-Hamiltonian reduction, choosing a specific symplectic leaf of one of the two Poisson structures. Then, we introduce the notion of a bi-Hamiltonian -hierarchy, that is, a bi-Hamiltonian hierarchy that is defined only at the points of the symplectic leaf , and we show that the Boussinesq hierarchy can be interpreted as the reduction of a bi-Hamiltonian -hierarchy.
2021
62
7
073502-1
073502-15
Integrable PDEs; Bi-Hamiltonian structures
Ortenzi G.; Pedroni M.
File in questo prodotto:
File Dimensione Formato  
OP-bH-Boussinesq-JMP.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
boussinesq-revised-rev1.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 363.74 kB
Formato Adobe PDF
363.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1896412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact