The Axiom of Dependent Choice $\mathsf{DC}$ and the Axiom of Countable Choice $\mathsf{AC}_\omega$ are two weak forms of the Axiom of Choice that can be stated for a specific set: $\mathsf{DC}(X)$ asserts that any total binary relation on $X$ has an infinite chain, while $\mathsf{AC}_\omega (X)$ asserts that any countable collection of nonempty subsets of $X$ has a choice function. It is well-known that $\mathsf{DC} \Rightarrow \mathsf{AC}_\omega$. We study for which sets and under which hypotheses $\mathsf{DC}(X) \Rightarrow \mathsf{AC}_\omega (X)$, and then we show it is consistent with $\mathsf{ZF}$ that there is a set $A \subseteq \mathbb{R}$ for which $\mathsf{DC} (A)$ holds, but $\mathsf{AC}_\omega (A)$ fails.

Does $\mathsf{DC}$ imply $\mathsf{AC}_ω$, uniformly?

Alessandro Andretta
;
Lorenzo Notaro
2023-01-01

Abstract

The Axiom of Dependent Choice $\mathsf{DC}$ and the Axiom of Countable Choice $\mathsf{AC}_\omega$ are two weak forms of the Axiom of Choice that can be stated for a specific set: $\mathsf{DC}(X)$ asserts that any total binary relation on $X$ has an infinite chain, while $\mathsf{AC}_\omega (X)$ asserts that any countable collection of nonempty subsets of $X$ has a choice function. It is well-known that $\mathsf{DC} \Rightarrow \mathsf{AC}_\omega$. We study for which sets and under which hypotheses $\mathsf{DC}(X) \Rightarrow \mathsf{AC}_\omega (X)$, and then we show it is consistent with $\mathsf{ZF}$ that there is a set $A \subseteq \mathbb{R}$ for which $\mathsf{DC} (A)$ holds, but $\mathsf{AC}_\omega (A)$ fails.
2023
http://arxiv.org/abs/2305.06676v1
Mathematics - Logic; Mathematics - Logic; 03E25 (Primary) 03E35, 03E40 (Secondary)
Alessandro Andretta; Lorenzo Notaro
File in questo prodotto:
File Dimensione Formato  
2305.06676.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 284.29 kB
Formato Adobe PDF
284.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1946721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact