Federated Learning (FL) has emerged as a solution to preserve data privacy by keeping the data locally on each participant’s device. However, FL alone is still vulnerable to attacks that can cause privacy leaks. Therefore, additional security measures, at the cost of increasing runtimes, become necessary. The Trusted Execution Environment (TEE) approach offers the highest degree of security during execution. However, TEEs suffer from memory limits which prevent safe end-to-end FL training of modern deep models. State-of-the-art approaches limit secure training to selected layers, failing to avert the full spectrum of attacks or adopt layer-wise training affecting model performance. We benchmark the usage of a library OS (LibOS) to run the full, unmodified end-to-end FL training inside the TEE. We extensively evaluate and model the overhead of the different security mechanisms needed to protect the data and model during computation (TEE), communication (TLS), and storage (disk encryption). The obtained results across three datasets and two models demonstrate that LibOSes are a viable way to seamlessly inject security into FL with limited overhead (at most 2x), offering valuable guidance for researchers and developers aiming to apply FL in data-security-focused contexts.
A Performance Analysis for Confidential Federated Learning
Bruno Casella
First
;Iacopo Colonnelli;Gianluca Mittone;Robert Birke;Marco AldinucciLast
2024-01-01
Abstract
Federated Learning (FL) has emerged as a solution to preserve data privacy by keeping the data locally on each participant’s device. However, FL alone is still vulnerable to attacks that can cause privacy leaks. Therefore, additional security measures, at the cost of increasing runtimes, become necessary. The Trusted Execution Environment (TEE) approach offers the highest degree of security during execution. However, TEEs suffer from memory limits which prevent safe end-to-end FL training of modern deep models. State-of-the-art approaches limit secure training to selected layers, failing to avert the full spectrum of attacks or adopt layer-wise training affecting model performance. We benchmark the usage of a library OS (LibOS) to run the full, unmodified end-to-end FL training inside the TEE. We extensively evaluate and model the overhead of the different security mechanisms needed to protect the data and model during computation (TEE), communication (TLS), and storage (disk encryption). The obtained results across three datasets and two models demonstrate that LibOSes are a viable way to seamlessly inject security into FL with limited overhead (at most 2x), offering valuable guidance for researchers and developers aiming to apply FL in data-security-focused contexts.File | Dimensione | Formato | |
---|---|---|---|
DLSP___CONFIDENTIAL_FL.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
344.13 kB
Formato
Adobe PDF
|
344.13 kB | Adobe PDF | Visualizza/Apri |
PDF_Editoriale.pdf
Accesso riservato
Descrizione: PFD Editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
401.68 kB
Formato
Adobe PDF
|
401.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.