This paper proposes FROCKS, a federated time series classification method using ROCKET features. Our approach dynamically adapts the models’ features by selecting and exchanging the best-performing ROCKET kernels from a federation of clients. Specifically, the server gathers the best-performing kernels of the clients together with the associated model parameters, and it performs a weighted average if a kernel is best-performing for more than one client. We compare the proposed method with state-of-the-art approaches on the UCR archive binary classification datasets and show superior performance on most datasets.
Federated Time Series Classification with ROCKET features
Casella, Bruno
Co-first
;Aldinucci, Marco;
2024-01-01
Abstract
This paper proposes FROCKS, a federated time series classification method using ROCKET features. Our approach dynamically adapts the models’ features by selecting and exchanging the best-performing ROCKET kernels from a federation of clients. Specifically, the server gathers the best-performing kernels of the clients together with the associated model parameters, and it performs a weighted average if a kernel is best-performing for more than one client. We compare the proposed method with state-of-the-art approaches on the UCR archive binary classification datasets and show superior performance on most datasets.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ES2024-61.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.