Data confidentiality is a critical issue in the digital age, impacting interactions between users and public services and between scientific computing organizations and Cloud and HPC providers. Performance in parallel computing is essential, yet techniques for establishing Trusted Execution Environments (TEEs) to ensure privacy in remote environments often negatively impact execution time. This paper aims to analyze the performance of a parallel bioinformatics workload for DNA alignment (Bowtie2) executed within the confidential enclaves of Intel SGX processors. The results provide encouraging insights regarding the feasibility of using SGX-based TEEs for parallel computing on large datasets. The findings indicate that, under conditions of high parallelization and with twice as many threads, workloads executed within SGX enclaves perform, on average, 15% faster than non-confidential execution. This empirical demonstration supports the potential of SGX-based TEEs to effectively balance the need for privacy with the demands of high-performance computing.
Performance Analysis on DNA Alignment Workload with Intel SGX Multithreading
Lorenzo brescia
First
;Iacopo Colonnelli;Marco Aldinucci
2024-01-01
Abstract
Data confidentiality is a critical issue in the digital age, impacting interactions between users and public services and between scientific computing organizations and Cloud and HPC providers. Performance in parallel computing is essential, yet techniques for establishing Trusted Execution Environments (TEEs) to ensure privacy in remote environments often negatively impact execution time. This paper aims to analyze the performance of a parallel bioinformatics workload for DNA alignment (Bowtie2) executed within the confidential enclaves of Intel SGX processors. The results provide encouraging insights regarding the feasibility of using SGX-based TEEs for parallel computing on large datasets. The findings indicate that, under conditions of high parallelization and with twice as many threads, workloads executed within SGX enclaves perform, on average, 15% faster than non-confidential execution. This empirical demonstration supports the potential of SGX-based TEEs to effectively balance the need for privacy with the demands of high-performance computing.File | Dimensione | Formato | |
---|---|---|---|
paper107.pdf
Accesso aperto
Descrizione: PDF editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.