This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g−1 to 1 ng g−1. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method’s analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.

Translating 2D-chromatographic fingerprinting to quantitative volatilomics: unrevealing compositional changes in maize silage volatilome for robust markers discovery

Caratti A.
First
;
Ferrero F.;Tabacco E.;Liberto E.;Borreani G.;Cordero C.
Last
2024-01-01

Abstract

This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g−1 to 1 ng g−1. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method’s analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.
2024
Inglese
Esperti anonimi
72
23616
23630
15
comprehensive two-dimensional gas chromatography, accurate quantification, combined Untargeted and Targeted (UT) fingerprinting, maize silage, volatile organic compounds, LAB inocula, aerobic stability, parallel detection MS/FID, predicted relative response factors
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
7
Caratti A., Ferrero F., Tabacco E., Gerbaldo F., Liberto E., Borreani G., Cordero C.
info:eu-repo/semantics/article
reserved
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
120-2024-Caratti-et-al-Translating 2D-Chromatographic Fingerprinting to Quantitative.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact