We investigate some syntactic properties of Wadler’s dual calculus, a term calculus which corresponds to classical sequent logic in the same way that Parigot’s lambda mu calculus corresponds to classical natural deduction. Our main result is strong normalization theorem for reduction in the dual calculus; we also prove some confluence results for the typed and untyped versions of the system.

Strong Normalization of the Dual Classical Sequent Calculus

LIKAVEC, Silvia;
2005-01-01

Abstract

We investigate some syntactic properties of Wadler’s dual calculus, a term calculus which corresponds to classical sequent logic in the same way that Parigot’s lambda mu calculus corresponds to classical natural deduction. Our main result is strong normalization theorem for reduction in the dual calculus; we also prove some confluence results for the typed and untyped versions of the system.
2005
12th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2005)
Montego Bay, Jamaica
2-6 December 2005
Lecture Notes in Computer Science
Springer
3835
169
183
978-3-540-31650-3
http://www.springerlink.com/content/7658044101631746/
S. GHILEZAN; S. LIKAVEC; P. LESCANNE; D. DOUGHERTY
File in questo prodotto:
File Dimensione Formato  
dgll-lpar05_4aperto.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 247.19 kB
Formato Adobe PDF
247.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/28867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact