Introduction: Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Methods: Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Results: Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. Conclusion: This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies - aimed to assess the relationship between structural change and biological effects - require the integrated use of more than 1 tool.
Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type I
Robbiano A.;Ulivi S.;Mandrile G.;De Marchi M.;Amoroso A.
2010-01-01
Abstract
Introduction: Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Methods: Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Results: Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. Conclusion: This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies - aimed to assess the relationship between structural change and biological effects - require the integrated use of more than 1 tool.File | Dimensione | Formato | |
---|---|---|---|
Robbiano_post-print _1_.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
379.55 kB
Formato
Adobe PDF
|
379.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.