Power consumption management has become a major concern in software development. Continuous streaming computations are usually com- posed by different modules, exchanging data through shared message queues. The selection of the algorithm used to access such queues (i.e., the concurrency control) is a critical aspect for both performance and power consumption. In this paper, we describe the design of an adaptive concurrency control algo- rithm for implementing power-efficient communications on shared memory multicores. The algorithm provides the throughput offered by a nonblocking implementation and the power efficiency of a blocking protocol. We demon- strate that our algorithm reduces the power consumption of data streaming computations without decreasing their throughput.

Towards Power-Aware Data Pipelining on Multicores

ALDINUCCI, MARCO;
2017-01-01

Abstract

Power consumption management has become a major concern in software development. Continuous streaming computations are usually com- posed by different modules, exchanging data through shared message queues. The selection of the algorithm used to access such queues (i.e., the concurrency control) is a critical aspect for both performance and power consumption. In this paper, we describe the design of an adaptive concurrency control algo- rithm for implementing power-efficient communications on shared memory multicores. The algorithm provides the throughput offered by a nonblocking implementation and the power efficiency of a blocking protocol. We demon- strate that our algorithm reduces the power consumption of data streaming computations without decreasing their throughput.
2017
Hi
Valladolid, Spain
July 10-11, 2017
Proceedings of the 10th International Symposium on High-Level Parallel Programming and Applications
Universidad de Valladolid
223
238
Marco, Aldinucci; Marco, Danelutto; Daniele, De Sensi; Gabriele, Mencagli; Massimo, Torquati
File in questo prodotto:
File Dimensione Formato  
17_HLPP_powerstream.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1644982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact