Over the last few years, the potential of non-Saccharomyces yeasts to improve the sensory quality of wine has been well recognized. In particular, the use of Starmerella bacillaris in mixed fermentations with Saccharomyces cerevisiae was reported as an appropriate way to enhance glycerol formation and reduce ethanol production. However, during sequential fermentation, many factors, such as the inoculation timing, strain combination, and physical and biochemical interactions, can affect yeast growth, the fermentation process, and/or metabolite synthesis. Among them, the availability of yeast-assimilable nitrogen (YAN), due to its role in the control of growth and fermentation, has been identified as a key parameter. Consequently, a comprehensive understanding of the metabolic specificities and the nitrogen requirements would be valuable to better exploit the potential of Starm. bacillaris during wine fermentation. In this study, marked differences in the consumption of the total and individual nitrogen sources were registered between the two species, while the two Starm. bacillaris strains generally behaved uniformly. Starm. bacillaris strains are differentiated by their preferential uptake of ammonium compared with amino acids that are poorly assimilated or even produced (alanine). Otherwise, the non-Saccharomyces yeast exhibits low activity through the acetaldehyde pathway, which triggers an important redistribution of fluxes through the central carbon metabolic network. In particular, the formation of metabolites deriving from the two glycolytic intermediates glyceraldehyde-3-phosphate and pyruvate is substantially increased during fermentations by Starm. bacillaris. This knowledge will be useful to better control the fermentation process in mixed fermentation with Starm. bacillaris and S. cerevisiae.
Specific phenotypic traits of Starmerella bacillaris regarding nitrogen source consumption and central carbon metabolites production during wine fermentation
Vasileios Englezos
First
;Luca Cocolin;Kalliopi Rantsiou;
2018-01-01
Abstract
Over the last few years, the potential of non-Saccharomyces yeasts to improve the sensory quality of wine has been well recognized. In particular, the use of Starmerella bacillaris in mixed fermentations with Saccharomyces cerevisiae was reported as an appropriate way to enhance glycerol formation and reduce ethanol production. However, during sequential fermentation, many factors, such as the inoculation timing, strain combination, and physical and biochemical interactions, can affect yeast growth, the fermentation process, and/or metabolite synthesis. Among them, the availability of yeast-assimilable nitrogen (YAN), due to its role in the control of growth and fermentation, has been identified as a key parameter. Consequently, a comprehensive understanding of the metabolic specificities and the nitrogen requirements would be valuable to better exploit the potential of Starm. bacillaris during wine fermentation. In this study, marked differences in the consumption of the total and individual nitrogen sources were registered between the two species, while the two Starm. bacillaris strains generally behaved uniformly. Starm. bacillaris strains are differentiated by their preferential uptake of ammonium compared with amino acids that are poorly assimilated or even produced (alanine). Otherwise, the non-Saccharomyces yeast exhibits low activity through the acetaldehyde pathway, which triggers an important redistribution of fluxes through the central carbon metabolic network. In particular, the formation of metabolites deriving from the two glycolytic intermediates glyceraldehyde-3-phosphate and pyruvate is substantially increased during fermentations by Starm. bacillaris. This knowledge will be useful to better control the fermentation process in mixed fermentation with Starm. bacillaris and S. cerevisiae.| File | Dimensione | Formato | |
|---|---|---|---|
|
Englezos et al., 2018.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
803.89 kB
Formato
Adobe PDF
|
803.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Englezos_et_al., 2018 AperTO.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
509.77 kB
Formato
Adobe PDF
|
509.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



