The wastewater from the dumping site usually contains high pollutant levels. Biological process and physico-chemical treatments are among several technologies for wastewater treatment. Using microorganisms in the treatment of landfill leachate is an emerging research issue. Furthermore, bioremediation is a feasible approach for pollutants removal from landfill leachate which would provide an efficient way to resolve the issue of landfill leachate. In this study, the performance of yeast and bacteria isolated from kefir grains was assessed for landfill leachate treatment. Kefir grains microbial composition was evaluated by molecular approaches (Rep-PCR and 16S rRNA gene sequencing). The obtained outcomes denoted that high concentrations of lactic acid bacteria and yeast populations (over 107 CFU/ml) were found in the kefir grains and were essentially composed of Lactococcus lactis, Lactobaccillus kefirien, bacillus sp., L. lactis, and Kluyveromyces marxianus. The co-culture with 1% of inoculum size was demonstrated as the most efficient in the degradation of different contaminants. The overall abatement rate of chemical oxygen demand (COD), ammonium nitrogen ((Formula presented.) ), and salinity were 75.8%, 85.9%, and 75.13%, respectively. The bioremediation process resulted in up of 75% removal efficiency of Ni and Cd, and a 73.45%, 68.53%, and a 58.17% removal rates of Cu, Pb, and Fe, respectively. The research findings indicate the performance of L. lactis and K. marxianus co-culture isolated from kefir grains for the bioremediation of LFL. Practitioner Points: Isolation and identification of microorganisms from kefir grains was carried out. Biological treatment of LFL using monoculture of (Lactoccocus lactis; Kluyveromyces marxianus) and co-culture (5% of L. lactis and 5% K. marxianus) has been performed. Biological treatment using co-culture strain is an effective approach to remove organic matter, (Formula presented.) and heavy metals.

Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate

Botta C.;Franciosa I.;Cocolin L.;
2020-01-01

Abstract

The wastewater from the dumping site usually contains high pollutant levels. Biological process and physico-chemical treatments are among several technologies for wastewater treatment. Using microorganisms in the treatment of landfill leachate is an emerging research issue. Furthermore, bioremediation is a feasible approach for pollutants removal from landfill leachate which would provide an efficient way to resolve the issue of landfill leachate. In this study, the performance of yeast and bacteria isolated from kefir grains was assessed for landfill leachate treatment. Kefir grains microbial composition was evaluated by molecular approaches (Rep-PCR and 16S rRNA gene sequencing). The obtained outcomes denoted that high concentrations of lactic acid bacteria and yeast populations (over 107 CFU/ml) were found in the kefir grains and were essentially composed of Lactococcus lactis, Lactobaccillus kefirien, bacillus sp., L. lactis, and Kluyveromyces marxianus. The co-culture with 1% of inoculum size was demonstrated as the most efficient in the degradation of different contaminants. The overall abatement rate of chemical oxygen demand (COD), ammonium nitrogen ((Formula presented.) ), and salinity were 75.8%, 85.9%, and 75.13%, respectively. The bioremediation process resulted in up of 75% removal efficiency of Ni and Cd, and a 73.45%, 68.53%, and a 58.17% removal rates of Cu, Pb, and Fe, respectively. The research findings indicate the performance of L. lactis and K. marxianus co-culture isolated from kefir grains for the bioremediation of LFL. Practitioner Points: Isolation and identification of microorganisms from kefir grains was carried out. Biological treatment of LFL using monoculture of (Lactoccocus lactis; Kluyveromyces marxianus) and co-culture (5% of L. lactis and 5% K. marxianus) has been performed. Biological treatment using co-culture strain is an effective approach to remove organic matter, (Formula presented.) and heavy metals.
2020
92
12
2041
2048
ammonium nitrogen removal; bioremediation; landfill leachate; microorganisms; organic materials removal; Culture; Kluyveromyces; RNA, Ribosomal, 16S; Environmental Pollutants; Kefir; Lactococcus lactis; Water Pollutants, Chemical
Cherni Y.; Botta C.; Kasmi M.; Franciosa I.; Cocolin L.; Chatti A.; Trabelsi I.; Elleuch L.
File in questo prodotto:
File Dimensione Formato  
Water_Env_Fed_2020.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1831357
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact