In this study we investigated yeast biodiversity and dynamics during the production of a sweet wine obtained from dried grapes. Two wineries were selected in the Collio region and grapes, grape juices and wines during fermentations were analyzed by culture-dependent methods (plating on WLN medium) and cultureindependent methods (PCR-DGGE). Moreover, the capability of the Saccharomyces cerevisiae starter cultures to take over the fermentation was assessed by RAPD-PCR. On WLN agar several species of non-Saccharomyces yeasts (Hanseniaspora, Metschnikowia, Pichia, Candida, Torulaspora and Debaryomyces), but also strains of S. cerevisiae, were isolated. After inoculation of the starter cultures, only colonies typical of S. cerevisiae were observed. Using PCR-DGGE, the great biodiversity of moulds on the grapes was underlined, both at the DNA and RNA level, while the yeast contribution started to become important only in the musts. Here, bands belonging to species of Candida zemplinina and Hanseniaspora uvarum were visible. Lastly, when the S. cerevisiae isolates were compared by RAPD-PCR, it was determined that only in one of the fermentations followed, the inoculated strain conducted the alcoholic fermentation. In the second fermentation, the starter culture was not able to promptly implant and other populations of S. cerevisiae could be isolated, most likely contributing to the final characteristics of the sweet wine produced.
Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods
RANTSIOU, KALLIOPI;DOLCI, Paola;ROLLE, Luca Giorgio Carlo;COCOLIN, Luca Simone
2008-01-01
Abstract
In this study we investigated yeast biodiversity and dynamics during the production of a sweet wine obtained from dried grapes. Two wineries were selected in the Collio region and grapes, grape juices and wines during fermentations were analyzed by culture-dependent methods (plating on WLN medium) and cultureindependent methods (PCR-DGGE). Moreover, the capability of the Saccharomyces cerevisiae starter cultures to take over the fermentation was assessed by RAPD-PCR. On WLN agar several species of non-Saccharomyces yeasts (Hanseniaspora, Metschnikowia, Pichia, Candida, Torulaspora and Debaryomyces), but also strains of S. cerevisiae, were isolated. After inoculation of the starter cultures, only colonies typical of S. cerevisiae were observed. Using PCR-DGGE, the great biodiversity of moulds on the grapes was underlined, both at the DNA and RNA level, while the yeast contribution started to become important only in the musts. Here, bands belonging to species of Candida zemplinina and Hanseniaspora uvarum were visible. Lastly, when the S. cerevisiae isolates were compared by RAPD-PCR, it was determined that only in one of the fermentations followed, the inoculated strain conducted the alcoholic fermentation. In the second fermentation, the starter culture was not able to promptly implant and other populations of S. cerevisiae could be isolated, most likely contributing to the final characteristics of the sweet wine produced.File | Dimensione | Formato | |
---|---|---|---|
15 - 2008 FEMS - Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods..pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
233.91 kB
Formato
Adobe PDF
|
233.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.